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SUMMARY

We try to formalize and study how mesh adaptation improves the approximation of interpolated functions
or of PDE solutions. We �rst de�ne an adaptive solution, in the sense that the pair (mesh,function)
satis�es a non-linear coupled equation. In order to build optimal mesh adaptation strategies, we also
de�ne a functional model, the ‘continuous metric’, which leads to propose the best mesh for a given
function and a given norm. We then describe how convergence of adaptive solutions can be better
than for non-adaptive ones; this involves some recent re�nements concerning what we called early
capturing of details, a speci�c property of good adaptive strategies. We give some typical numerical
illustrations. Convergence properties depend very much on how mesh adaptation is performed and
we exhibit theoretical limits for the maximum order of accuracy reachable for some family of mesh
adaptation methods. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: mesh adaptation; �uid mechanics; interpolation

1. INTRODUCTION

Very soon, CFD engineers and scientists have been faced to non-smooth solutions of Partial
Di�erential Equations (PDEs) for which meshes should be adapted. During the last 20 years,
mesh adaptation was the centre of many works, which we can classify in three groups,
according to the mesh technique used. If the mesh is deformed, with a constant topology,
then it was soon understood that the mesh also is a solution of some system, an important
idea for the sequel. If the mesh is locally divided, researchers have looked for better error
estimates, and in particular to a posteriori error estimates. See Reference [1] for a pioneering
work or [2, 3] for more recent developments. If the mesh is more strongly modi�ed or even

∗ Correspondence to: A. Dervieux, INRIA, 2004 Route des Lucioles, Sophia-Antipolis, 06912, France.
† E-mail: alain.dervieux@inria.fr
‡ E-mail: David.Leservoisier@sophia.inria.fr
§ E-mail: Paul-Louis.George@inria.fr

Received 26 May 2001
Copyright ? 2003 John Wiley & Sons, Ltd. Accepted 15 January 2003



508 A. DERVIEUX ET AL.

rebuilt, then the question of adequate stretching was risen and well advanced for example in
References [4–6]. While a posteriori error estimates are undoubtedly the major domain of
progress in mesh adaptation, they do not answer alone some important questions about mesh
adaptation. In the proposed study, we restrict ourselves to a context for which error estimation
is trivial. We consider the interpolation of a given function on a mesh. This will allow to
focus on complementary questions and in particular:

(a) How can one adapt a mesh to the best interpolation of a given function?
(b) What are the convergence properties of an adapted interpolation?
(c) What is this practically useful for?

In order to answer question (a), we suggest not to look directly for a class of meshes.
Instead, we propose to modellize the properties of a class of meshes starting from the idea
of a metric, assumed to be a continuous function. In each point of the computational domain,
the metric de�nes the local size and stretching of an ideal mesh. Since it is a function, we
can apply a functional treatment of the research of an optimal mesh.
Concerning question (b), it is generally believed that mesh adapted methods can be approx-

imations of high order for singular functions. We recall that mesh adaptation is also essential
for smooth functions with large gradients. Then we explain how performances of some family
of mesh adaptation methods are limited by some barriers that we shall describe.
About question (c), we like to show that mesh adaptation methods are not (not only?) an

extra complication in the process of solving PDE. On the contrary, mesh adaptation provides
discrete solutions that converge faster and easier to the continuous limit, while, in many com-
putations, usual strategies of re�nement de�nitively fail in showing good ‘mesh convergence’.
Once in the sweet paradise of mesh convergence, we can apply old recipes �a la Romberg,
yielding some idea of the local error size and possibly still better solutions.
This leads us to the following plan:

2. Adaptive solution;
3. Continuous metric;
4. Adaptive convergence to singular functions;
5. Early capturing;
6. Barriers for re�nement strategies;
7. Concluding remarks.

2. ADAPTIVE SOLUTION

A numerical scheme provides the approximate solution uM of a given PDE when the mesh
M is given.
Conversely we shall say that we have a perfect mesh adaptor if, given a PDE and its

approximate solution, and given a number of nodes N , we can derive a unique mesh M
adapted to the solution.
A perfect adaptive solution is a pair (u;M) which is the �xed point of the above two steps:

(a) an approximate solution u is computed on the mesh M and (b) a new mesh M is derived
by mesh adaptation from u.
We refer to [5, 6] for works presenting this kind of iteration.
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3. CONTINUOUS METRIC

A set of unstructured meshes is not easily mapped into a vector space, due to the heterogeneity
of the data used for de�ning the topology of each mesh. Furthermore, two equivalent meshes,
i.e. that produce two numerical solutions of same quality, are not represented by the same
amount of information if their topologies di�er. It is then interesting to represent a family of
equivalent meshes by a unique function de�ned on the computational domain, that speci�es
the local �neness and stretching that is common to equivalent meshes.

3.1. De�nitions

We restrict here to the one-dimensional case. A metric on interval [a; b] is a continuous
positive-valued function M of the spatial independent variable x∈ [a; b].
We shall say that a mesh of N points : x1 = a; x2; : : : ; xN = b belongs to the equivalence

class related to metric M if the di�erence:∫ xi+1

xi

√
M dx − 1

is much smaller than 1 for any i. Assume for simplicity that it is zero, the local mesh size
mM=M−1=2 satis�es:
For any interval [xi; xi+1] of a mesh speci�ed by metric M, the following equality holds:∫ xi+1

xi
1=mM dx=1.

Conversely, given a metric M, we can directly compute its number of nodes C(M):

C(M)=
∫ 1

0
(M)1=2 dx=

∫ 1

0
1=mM dx (1)

Let u be a given twice di�erentiable function. We denote by �M the continuous, linear
by element, interpolator on mesh M. The interpolation error can be modelled as follows (cf.
Reference [7]):

|eM(x)|= |(u−�Mu)(s)|=m2M|u′′(x)| (2)

where m plays the role of Taylor’s formula step �x.

3.2. Optimal metric

Given a function u, instead of looking for the best mesh, we are now able to look for the best
metric, by minimizing in the L� norm of the P1 interpolation error induced by the metric;
this leads to a minimum problem with respect to the metric:

Find MN =Argmin
M
(|eM(x))L� | (3)

under the constraint:
∫ 1

0
m−1

M (x) dx=N (4)
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Using the model of error, we get

1
2

∫ 1

0
|eM(x)|� ds= 12

∫ 1

0

(
m2M

∣∣∣∣@
2u
@x2

∣∣∣∣
)�
ds (5)

We discard index M for simplicity. The usual calculus of variations applied to 1=m (to have
a linear constraint) yields the following optimality condition:

(2�)
∫ 1

0
(1=m)−2�−1(|u′′|)��(1=m) ds¿0 ∀�(1=m) :

∫ 1

0
�(1=m)=0 (6)

and the optimal metric MN is given by its mesh size:

mN (x)=
∫ |u′′|�=(2�+1) ds

N
|u′′(x)|−�=(2�+1) (7)

The above formula speci�es the node distribution when the second derivative of u and the
total number N of nodes are given.
This method extends well to the multi-dimensional case and anisotropic meshes, see Ref-

erence [7].

3.3. Towards the PDE case

This theory also extends to the research of an optimal mesh for an approximate PDE solution.
We shall give here only a few hints about the way it does.
Let us assume we are solving the Dirichlet problem:

−uxx=f on [0; 1]; u(0)= u(1)=0 (8)

We can modellize the approximation error from the a priori estimate as

1
2

∫ 1

0
|eM(x)|� ds= 12

∫ 1

0
(−�)−1

(
m2

∣∣∣∣@
2u
@x2

∣∣∣∣+m2
∣∣∣∣@
2f
@x2

∣∣∣∣
)�
ds (9)

where (−�)−1g stands for the solution of the Dirichlet problem with right-hand side g. The
minimization of functional (9) under state equation (8) is an Optimal Control problem for
which optimality is obtained by introducing the classical adjoint state [8].

4. ADAPTIVE CONVERGENCE TO SINGULAR FUNCTIONS

4.1. Higher-order convergence

Let us assume that we have computed a set of adaptive solutions (according to de�nition of
Section 1) (MN ; UN ) with any N of a sequence of positive integers tending to in�nity. Then
the mesh convergence order � can be expressed in terms of the total number N of nodes and
of the dimension of geometrical space d (here d=1):

error6Cte N�=d
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In the case of a discontinuous function u, sequences of uniform meshes cannot show an order
better than one-half. A higher-order convergence property of adaptive strategies is asserted by
the following lemma:

Lemma 1
Let us consider an interpolator of real-valued functions of one variable, with theoretical order
of accuracy order �. Let u a piecewise regular function with one discontinuity. Then uniform
re�nement convergence can be of order at most 1

2 in L
2. At the contrary, when an adaptive

strategy is applied, the convergence order can be as high as �.

Indeed, in short, an adaptive strategy can force the successive meshes to be 2(�+1) �ner
near the discontinuity while just twice �ner in regular parts. Then the global error is 2� times
smaller, while the number of nodes is essentially doubled. Then the method is of order �.

4.2. Convergence order of the continuous metric model

Let us examine how to look for an optimal metric in the discontinuous case. When a P1

interpolation is choosen, we modellize the error as

∫ 1

0
|eM(x)|� ds=

∫ 1

0
(m2|�−2(u(x + �)− 2u(x) + u(x − �))|)� ds (10)

Where � is smaller than m. We observe that the di�erential quotient:

�−2(u(x + �)− 2u(x) + u(x − �)) :

• is close to @2u=@x2 where u is regular;
• or of the order of �−2 at singularities of u.
Moreover, since u is bounded,

||�−2(u(x + �)− 2u(x) + u(x − �))||L1=2 is bounded independently of � (11)

The calculus of variations gives now:

mN (x)=Cte:|(|�−2(u(x + �)− 2u(x) + u(x − �))|(x))|−2=5 (12)

and the resulting optimal error in L2 writes:

Error =
2
N 2

(∫
|�−2(u(x + �)− 2u(x) + u(x − �))|2=5

)5=2
¡
K
N 2

where K is a bounded constant, due to (11). We deduce that the adaptive strategy is formally
of second-order accuracy.
Lemma 1 in previous section and the analysis of present section extend to multidimensional

cases. There is still a lot of work in order to study how these properties can be generalized
to the context of mesh adaptation applied to PDEs. The next section tries to show some
numerical evidence that the above theory applies well to CFD.
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Figure 1. Mesh convergence of friction velocity for a �at plate computation with isotropic adaptation.
Number of nodes is read on x-axis, L2 approximation error on y-axis. Crosses correspond to a series
of adapted isotropic computations, dash line for second-order convergence. Second-order convergence

is observed only for mesh sizes larger than 10 000.

5. EARLY CAPTURING

Many authors have noted that in the case of smooth functions with locally high gradients,
uniform re�nement may show half-order convergence until many nodes are considered in
such a way that local mesh size is small enough for the good representation of the local
high gradients. Only then, the higher-order convergence appears. See for example Reference
[9]. In contrast, the number of nodes necessary for adaptive methods to show higher-order
convergence is much smaller number. We call this property ‘early capturing’. (Figs. 1 and 2).

5.1. Early capturing in CFD

In order to illustrate this property, we apply a mesh adaptation strategy that is a rather popular
combination of Hessian evaluation and anisotropic mesh reconstruction with control on the
mesh size [4, 5]. Iteration between PDE solution and mesh adaptation is applied for a �xed
number N of nodes.
We study the capture of a boundary layer in a supersonic turbulent �ow past a �at plate.

The �ow model is a k–” one with a wall law parameterized in such a way that only the
fully turbulent part of the boundary layer is captured by the mesh. We consider the fric-
tion velocity on a point on the plate after the stagnation point. A very �ne and accurate
adapted anisotropic computation with 200 000 nodes plays the role of the reference exact
solution.
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Figure 2. Mesh convergence of friction velocity for a �at plate computation with anisotropic adaptation.
Number of nodes is read on x-axis, L2 approximation error on y-axis. Crosses correspond to a series of
adapted anisotropic computations, dash line for second-order convergence. Second-order convergence is

already observed for mesh sizes larger than 3000.

A series of uniform re�nements with meshes as large as 100 000 nodes failed to produce
a measurable convergence to solution. We compare then two adaptive strategies: an isotropic
one in which triangles are not too di�erent from equilateral and an anisotropic one in which
stretching is applied. We observe that the isotropic strategy allows early capturing, i.e. second-
order convergence with a rather small number of nodes, i.e. for meshes �ner than 15 000
nodes.
The anisotropic strategy give second-order convergence already for 6000 nodes. Other ex-

amples are presented in Reference [10].

5.2. Certi�ed convergence in CFD

In the previous section, we get a mesh convergence at the asymptotical order. We examine
now how we can derive from it an evaluation of the accuracy of the result, and therefore a
kind of ‘certi�cation’ of its quality.
In the experiments presented in the previous section, we compare our calculations with a

reference ‘very accurate’ solution, but in practice it is not available. Instead, we can measure
the numerical order of convergence by comparing three results obtained with meshes involving
N nodes, 4N nodes and 16N nodes.
As a test case, we consider the very easy computation of a laminar �ow around a

NACA0012 airfoil. Far�eld Mach number is 1:2 and Reynolds number is 73. We start with
uniform re�nement with a coarse mesh of rather good quality, with 3000 nodes (=vertices).
It is uniformly divided �rst into a 12 000-node mesh which, in turn, is divided uniformly in a
48 000-node mesh. We then compute the numerical order of convergence. Table I shows the
results. This gives only a �rst-order numerical convergence.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:507–516
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Table I. Numerical convergence order in L2 norm for an airfoil �ow.

Flow variables Error for Error for Error for
(a) uniform (b) adaptive (c) adaptive
(�ne) (coarse) (�ne)

Density, � 0.948 1.62 2.15
Horizontal moment, �U 1.016 1.78 1.75
Vertical moment, �V 1.024 1.85 1.87

Note: Mesh sequence (a) is obtained by uniform re�nement, with meshes of 3000, 12 000, 48 000
nodes, mesh sequence (b) is obtained with coarser anisotropic adaptated meshes of 800, 3000,
12 000 nodes, mesh sequence (c) is obtained with anisotropic adaptated meshes of 3000, 12 000,
48 000 nodes.

Conversely, if each successive mesh is built with anisotropic adaptation, a convergence order
of 1.6–1.8 is already observed with a coarser sequence of 800–3000–12 000-node meshes.
Second-order convergence is con�rmed by a �ner sequence of adapted meshes with the two
previous adapted meshes, 3000–12 000-node, complemented by a 48 000-node adapted mesh.
Extrapolation strategies can then be applied to speci�c outputs (lift, drag, etc.), see for

example Reference [11].
Let us denote by uN the solution computed with the adapted anisotropic mesh of N vertices.

From the computation we get

||u3000 − u12 000||L2 = 1:802× 10−4

Relying on the second-order convergence we can certify the order of magnitude of the error
on the medium mesh as follows:

||u12 000 − uexact||L26(1:802=3)10−4 = 0:600× 10−4 (13)

As expectable, this estimate is coherent with the �nest calculation which gives

||u12000 − u48 000||L2 = 5:637× 10−5

6. BARRIERS FOR REFINEMENT STRATEGIES

The results of previous section point out di�erence of performances between isotropic and
anisotropic mesh adaptation. In some cases, we can quantify this di�erence, thanks to the state-
ment of a theoretical accuracy upper limit or barrier for isotropic mesh adaptation
methods:

Lemma 2 (Coudi�ere [12])
The order of convergence � in Lp of an isotropic adaptive mesh method applied in dimension
d to P1-interpolate a discontinuous function is bounded by

�6
d=p
d− 1
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Then isotropic mesh re�nement is a rather ine�cient procedure for interpolating discontinuous
functions: the error estimate with order 3

4 for isotropic 3D adaptation is a severe limit. Many
engineers and scientists remarked that the price of isotropic mesh adaptation such as Adaptive
Mesh re�nement is reasonable in 2D, but prohibitive in 3D, as soon as large 2D surfaces of
discontinuity are involved. Our conjecture—and numerical experience—is that the above limit
does not apply to best anisotropic mesh adaptation methods.

7. CONCLUDING REMARKS

The above remarks, although not yet proposing a coherent and complete analysis, tend to
show that mesh adaptation should not be considered only as a mesh improvement technique,
but rather as a new approximation method.
The adapted mesh is a part of the solution, it tends to be uniquely de�ned. The system

to solve is strongly non-linear. Iterations between mesh and �ow are mandatory. We propose
a way to realize this program by building �rst a complete functional context relying on the
continuous metric. The system appears then as the optimality condition of an optimization
problem. We are currently studying the extension of these results to multidimensional PDEs.
A speci�c convergence theory for adaptive meshes can be built by focusing on singular

functions. Adaptive methods then do converge with a better order of accuracy that non-
adaptive ones.
But isotropic adaptive methods have limitations in accuracy order for discontinuous func-

tions. The order is much smaller than for smooth functions. Anisotropic adaptive methods
likely escape these limitations.
In practical cases of aerodynamics, these limitations apply to most available mesh sizes.

Conversely, the proposed mesh adaptive algorithms performed well on pre-industrial �ow
cases.
From this point of view, mesh adaptation is a key for safer numerical computations, i.e.

computations with a good control of accuracy.
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